Nonperturbative analysis of a model quantum system under time periodic forcing

نویسندگان

  • Ovidiu Costin
  • Rodica D. Costin
چکیده

We analyze the time evolution of a one-dimensional quantum system with an attractive delta function potential whose strength is subjected to a time periodic (zero mean) parametric variation η(t). We show that for generic η(t), which includes the sum of any finite number of harmonics, the system, started in a bound state will get fully ionized as t → ∞ irrespective of the magnitude or frequency of η(t). For the case η(t) = r sin(ωt) we find an explicit representation of the probability of ionization. There are however exceptional, very non-generic η(t), that do not lead to full ionization. These include rather simple explicit periodic η(t) for which the system evolves to a nontrivial localized stationary state related to eigenfunctions of the Floquet operator. Analyse non-perturbative d’un systeme quantique modèle avec force exterieure periodique Résumé Nous analysons l’évolution dans le temps d’un système unidimensionel avec un potentiel attractif de type fonction delta soumis a une variation périodique de moyenne nulle, η(t). Nous démontrons que pour η générique (en particulier pour une somme finie d’oscillations harmoniques) le système qui est d’abord dans un état lié vat être complètement ionisé pour t→ ∞. Des fonctions η(t) très nongénériques, toutefois explicites, existent pour lesquelles le système évolue vers un état localisé non-trivial, lié aux fonctions propres de l’opérateur de Floquet associé. 1 Version française abrégée Nous étudions rigoureusement le comportement pour t → ∞ d’un système quantique unidimensionnel simple, avec potentiel attractif de type delta, soumis à une variation paramétrique périodique. Dans des unités convenables, le Hamiltonien est de la forme H(t) = H0 − 2 η(t)δ(x) = d dx2 − 2 δ(x)− 2 η(t)δ(x) où H0 a un seul état lié ub = e −|x| d’énergie ω0 = −1 et un spectre continu sur l’axe réel positif, avec fonctions propres généralisées, voir eq. (3). On peut développer la solution de l’équation de Schrödinger ψ(x, t) par rapport aux fonctions propres de H0 (5) avec conditions initielles θ(0) = θ0, Θ(k, 0) = Θ0(k) normalisées convenablement, eq. (6). Alors, la probabilité de survie de l’état lié est P (t) = |θ(t)|2, alors que |Θ(k, t)|2dk donne la “fraction de particules éjectées” avec (quasi-) impulsion dans l’intervalle dk. En prennant la fonction Y donnée par (7) on obtient les équations eq. (8) et Y satisfait une équation intégrale, (10). Notre méthode d’analyse utilise les propriétés analytiques de la transformation de Laplace y(p) de Y (t) pour déterminer les propriétés asymptotiques de Y (t) par rapport à t. Department of Mathematics, Hill Center, Rutgers University, New Brunswick, NJ 08903, USA. e-mail: [email protected], [email protected], [email protected], [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

. D S ] 2 5 M ay 1 99 8 Time - Periodic Quasigeostrophic Motion under Dissipation and Forcing ∗

The quasigeostrophic equation is a prototypical geophysical fluid model. In this paper, we consider time-periodic motions of this model under dissipation and time-dependent wind forcing. We show that when the wind forcing is time-periodic and the spatial square-integral of the wind forcing is bounded in time, the full nonlinear quasigeostrophic model has time-periodic motions, under some condit...

متن کامل

Time-periodic quasigeostrophic motion under dissipation and forcing

The quasigeostrophic equation is a prototypical geophysical fluid model. In this paper, we consider time-periodic motions of this model under dissipation and time-dependent wind forcing. We show that when the wind forcing is time-periodic and the spatial square-integral of the wind forcing is bounded in time, the full nonlinear quasigeostrophic model has time-periodic motions, under some condit...

متن کامل

J un 1 99 8 A Remark on the Three Dimensional Baroclinic Quasigeostrophic Dynamics ∗

We consider time-periodic patterns of the dissipative three dimensional baroclinic quasigeostrophic model in spherical coordinates, under time-dependent forcing. We show that when the forcing is time-periodic and the spatial square-integral of the forcing is bounded in time, the model has time-periodic solutions. Keywords— quasigeostrophic fluid model, dissipative dynamics, time-periodic motion...

متن کامل

A forecasting system by considering product reliability, POQ policy, and periodic demand

This paper presents an economic production quantity (EPQ) model with a periodic order quantity (POQ) policy, product reliability and periodic demand. The machine reliability has decreased over time; therefore, the rates of perfect and defective products reduce and increase over time, respectively. A fixed percentage of these products are reworked while the rest is wasted. Some equipment in thei...

متن کامل

Directed transport in a spatially periodic potential under periodic non-biased forcing

Abstract Transport of a particle in a spatially periodic harmonic potential under the influence of a slowly time-dependent unbiased periodic external force is studied. The equations of motion are the same as in the problem of a slowly forced nonlinear pendulum. Using methods of the adiabatic perturbation theory we show that for a periodic external force of general kind the system demonstrates d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001